RP1A, RP1B

1-phase PCB mount solid state relays

Main features

· Zero switching or instant-on

Surface mount technology

 Opto-isolation: > 4000 VACrms Blocking voltage: Up to 1000 Vp

AC Solid State Relay for PCB mounting

· Flexible encapsulation for extended life Control voltage: 3 to 32 VDC / 16 to 32 VAC

Non-repetitive surge current: Up to 250 Ap

 Rated operational current: 3, 5 or 5.5 AACrms Rated operational voltage: Up to 480 VACrms


Description

The RP1 is an SSR series for socket- or PCBmounting, providing an ideal interface between logic controls and AC loads.

The RP1 is designed for resistive and inductive loads up to 480VACrms.

Internally this new series enjoys an improved technical design with the introduction of stress-free flexible encapsulation and automated assembly of components.

The Solid State technology used can withstand peak voltages of 1000V, making the RP1 series suitable to drive AC loads such as valve solenoids and small induction motors.

These relays can be used to switch heaters, motors, lights, valves or solenoids.

Main functions

- · Zero cross or Instant on AC switching
- · Ratings up to 480 VACrms, 5.5 AACrms
- 3-32 VDC or 16-32 VAC control voltage

1

References

Order code

Enter the code entering the corresponding option instead of lacksquare

Code	Option	Description	Notes
R	-	Calid State Dalay (DCD)	
Р	-	Solid State Relay (PCB)	
1	-	Number of poles	
	Α	Switching mode: zero switching	
	В	Switching mode: instant-On switching	
	23	Rated operational voltage: 230 VACrms	
	40	Rated operational voltage: 400 VACrms	
	48	Rated operational voltage: 480 VACrms	
	D	Control voltage: 3 to 32 VDC	4 to 32 VDC for RP1A48 4 to 32 VDC for RP1B40 and RP1B48
	Α	Control voltage: 16 to 32 VAC	Only available for 230V, 5.5 A
	3	Rated operational current: 3 AACrms	
	5	Rated operational current: 5 AACrms	
	6	Rated operational current: 5.5 AACrms	
	Mx	M1 = Mounting on DIN EN adaptor RPM1	Max. 250V
	IVIX	M2 = Mounting on DIN EN adaptor RPM2	Max. 600V

Selection guide

Rated opera-	Blocking voltage	Control voltage	Rated operational current		
tional voltage	BIOCKING VOILage	Control voltage	3 AACrms	5.5 AACrms	
		3 to 32 VDC	RP1A23D3	RP1A23D5	RP1A23D6
230 VACrms	650 Vp		RP1B23D3	RP1B23D5	RP1B23D6
		16 to 32 VAC	-	-	RP1A23A6
400 VACrms	050 \/m	3 to 32 VDC	RP1A40D3	RP1A40D5	RP1A40D6
400 VACIIIIS	850 Vp	4 to 32 VDC	RP1B40D3	RP1B40D5	RP1B40D6
	1000 \/m		RP1A48D3	RP1A48D5	RP1A48D6
480 VACrms	1000 Vp	4 to 32 VDC	RP1B48D3	RP1B48D5	RP1B48D6

Selection Guide (mounted on DIN EN adaptor)

Rated opera-	Blocking voltage	Control voltage	Rated operational current		
tional voltage	BIOCKING VOILage		3 AACrms	5 AACrms	5.5 AACrms
		5 to 34 VDC	RP1A23D3M1	RP1A23D5M1	RP1A23D6M1
230 VACrms	650 Vp		RP1B23D3M1	RP1B23D5M1	RP1B23D6M1
		16 to 32 VAC	-	-	RP1A23A6M1*
480 VACrms	1000 Vp	6 to 34 VDC	-	RP1A48D5M2	-

* Version RP1A23A6M1 does not include an LED on the DIN adaptor.

RP1A, RP1B

CARLO GAVAZZI compatible components

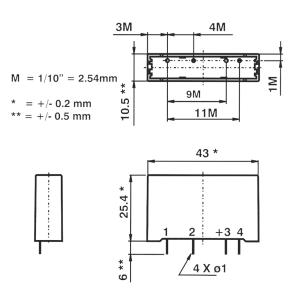
Purpose	Component name/code	Notes
	RPM1*	DIN adaptor 250V with LED
	RPM1V*	DIN adaptor 250V with LED + varistor
DIN adaptors	RPM1P	DIN adaptor 250V with pins for removal of RP
	RPM1PD*	DIN adaptor 250V with pins for removal of RP + LED
	RPM2	DIN adaptor 600V with LED

*not suitable for use with RP1A23A6

Further reading

Information	Where to find it
-	-

RP1A, RP1B


Features

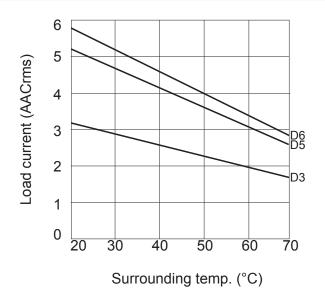
General

Material	PBT, RAL7035
Potting compound	Flame-retardant flexible silicone rubber
Weight	Approx. 20 g
Isolation: input to output	4 kVACrms
Insulation resistance	10 ¹⁰
Insulation capacitance	8 pF

Performance

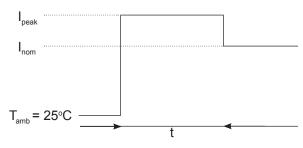
Mains supply

	RP1.23	RP1.40	RP1.48
Operational voltage range			
RP1A	12 - 265 VACrms	20 - 440 VACrms	20 - 530 VACrms
RP1B	12 - 265 VACrms	12 - 440 VACrms	12 - 530 VACrms
Operational frequency range		45 - 65 Hz	
Blocking voltage	650 Vp	850 Vp	1000 Vp
Zero voltage turn-on		< 10 V	


Outputs

	RP13	RP15	RP16	
Rated operational current				
AC 51 @ T _a = 25°C	3 A	5 A	5.5 A	
AC 53a @ T _a = 25°C	2 A	3 A	5 A	
Min. operational load current	20 mA			
Power factor		> 0.5		
Rep. overload current t=1 s	10 AACrms	12 AACrms	16 AACrms	
Non-rep. surge current t=20 ms	65 Ap	80 Ap	250 Ap	
Off-state leakage current		< 1 mA		
I ² t for fusing t=10 ms	20 A ² s	50 A ² s	340 A ² s	
Critical dV/dt off state min.	250 V/µs 500 V/µs			
On-state voltage drop @ rated current		< 1.2 Vrms		

RP1..D RP1..D..Mx **RP1A23A6** Control voltage RP1.23.. RP1A40.. RP1B40.. RP1.48.. 16 - 32 VAC 3-32 VDC 4-32 VDC 5-34 VDC 6-34 VDC Pick-up voltage RP1.23.. RP1A40.. RP1B40.. RP1.48.. 10 VAC 4.8 VDC 5.8 VDC 2.8 VDC 3.8 VDC 1.2 VDC 5 VAC **Drop-out voltage** Max. input curent RP1A... RP1B... 13 mAAC 10 mADC 15 mADC _ Max. reverse voltage 32 VDC 34 VDC -Response time pick-up RP1A... RP1B... < 10 ms < 160 µs (12 VDC/ 50 Hz) < 320 µs (5 VDC/ 50 Hz) < 20 ms -Response time drop-out RP1A... RP1B... < 20 ms < 10 ms -< 10 ms _


Derating curve

Derating curve is used for finding max. load current at an elevated ambient temperature. The 3 lines in the graph represent the 3 nominal current ratings of the RP1 series (RP1...D3/D5/D6).

When used at full load current, the relays must be placed vertically. If more than one relay is mounted, please allow a minimum distance of 20 mm in between for sufficient air cooling.

Increased Current Options

I peak (Amps)	6	8	10
D5 : t (minutes)	15	5	3
D6 : t (minutes	15	5	3

Note: even though the D3 can withstand a slight increase in current for a limited time, it is not recommended for this purpose.

Thermal data

Operating temperature	-20° to +70°C (-4° to +158°F)
Storage temperature	-40° to +100°C (-40° to +212°F)

RP1A, RP1B

CARLO GAVAZZI

Compatibility and conformity

Approvals	
	C22.2 No. 14-13 VDE 0700, VDE 0805 (excluding RP1A23A6)
Standards compliance	LVD: EN 60947-4-3 EMCD: EN 61000-6-2, EN 61000-6-4 UL508

Electromagnetic compatibility (Electromagnetic compatibility (EMC) - immunity			
Electrostatic discharge (ESD)	EN/IEC 61000-4-2			
Electrostatic discharge (ESD)	8 kV air discharge, 4 kV contact (PC1)			
	EN/IEC 61000-4-3			
Radiated radio frequency	10 V/m, from 80 MHz to 1 GHz (PC1)			
Radiated radio frequency	10 V/m, from 1.4 to 2 GHz (PC1)			
	10 V/m, from 2 to 2.7 GHz (PC1)			
	EN/IEC 61000-4-4			
Electrical fast transient (burst)	Output: 2 kV, 5 kHz (PC2)			
	Input: 1 kV, 5 kHz (PC2)			
Conducted radio frequency	EN/IEC 61000-4-6			
Conducted radio frequency	10V/m, from 0.15 to 80 MHz (PC1)			
	EN/IEC 61000-4-5			
	Output, line to line: 1 kV (PC2)			
Electrical surge	Output, line to earth: 1 kV (PC2) ¹			
	Input, line to line: 500 V (PC2) ²			
	Input, line to earth: 500 V (PC2) ²			
	EN/IEC 61000-4-11			
Valtare dina	0% for 0.5, 1 cycle (PC2)			
Voltage dips	40% for 10 cycles (PC2)			
	70% for 25 cycles (PC2)			
Voltage Interruptions	EN/IEC 61000-4-11			
Voltage Interruptions	0% for 5000ms (PC2)			

Electromagnetic compatibility (EMC) - emissions	
Radio interference field emis-	EN/IEC 55011
sion (radiated)	Class A: from 30 to 1000 MHz
Radio interference voltage emissions (conducted)	From 0.15 to 30 MHz EN/IEC 55011 Class A (industrial) with filter capacitor across the Mains supply EN/IEC 60947-4-3 Class A (no filtering needed)

Note:

- Performance Criteria 1 (PC1): no degradation of performance or loss of function is allowed when the product is operated as intended.
- Performance Criteria 2 (PC2): during the test, degradation of performance or partial loss of function is allowed. However when the test is complete the product should return operating as intended by itself.
- Performance Criteria 3 (PC3): temporary loss of function is allowed, provided the function can be restored by manual operation of the controls.
- Control input lines must be installed together to maintain products' susceptability to Radio Frequency interference.
- 1 A suppression device, such as a varistor, needs to be connected across the output terminals L1, T1 for immunity against higher voltage levels.
- ² A suppression device, such as a transil, needs to be connected across the control terminals A1, A2 for immunity against higher voltage levels.

CARLO GAVAZZI **RP1... Functional diagram** (+) 3 REGULATION (ZC Control IO input 2 (-) 4 ZC - Zero Crossing IO - Instant On **RP..Mx Functional diagram** RP..Mx RP1... (+) 3 1 1 REGULATION 3 Control ZC (+) 10 input 2 (-) 4 4 (-)

* The varistor is not included in the solid state relay. Connecting a varistor across terminals 1-2 helps protect the solid state relay against damages by over-voltage

Connection specifications

Terminals	Copper alloy, tin-plated
Terminals soldering tempera- ture	max. 300°C for 5 seconds

COPYRIGHT ©2016 Content subject to change. Download the PDF: www.productselection.net

RP1A, RP1B