Energy Management Power Analyzer
Type WM14 96 "Advanced version"

CARLO GAVAZZI

- Protection degree (front): IP65
- 2 digital outputs
- 16 freely configurable alarms with OR/AND logic linkable with up to 2 digital outputs
- RS422/485 serial output (MODBUS-RTU), iFIX SCADA compatibility

Product Description

3-phase advanced power analyzer with integrated programming key-pad. Particularly recommended for the measurement of the main electrical variables.

- Class 1 (kWh), Class 2 (kvarh)
- Accuracy ± 0.5 F.S. (current/voltage)
- Power Analyzer
- Instantaneous variables read-out: 3 DGT
- Energies readout: 8+1 DGT
- System variables: $\mathrm{V}_{\mathrm{LL}}, \mathrm{V}_{\mathrm{LN}}, \mathrm{An}, \mathrm{A}_{\mathrm{dmd}} \max , \mathrm{VA}, \mathrm{VA}_{\mathrm{dmd}}$,

VA $_{\text {dmd max }}, \mathbf{W}$, W $_{\text {dmd }}, \mathbf{W}_{\text {dmd max }}$, var, PF, Hz, ASY

- Single phase variables: $\mathrm{V}_{\mathrm{LL}}, \mathrm{V}_{\mathrm{LN}}, \mathrm{V}_{\mathrm{LN} \text { min }}, \mathrm{V}_{\mathrm{LN} \text { max }}, \mathbf{A}, \mathrm{A}_{\text {min }}$, $A_{\text {max }}$, A $_{\text {dmd }}$, VA, W, W dimd, $\mathbf{W}_{\text {max }}$, var, PF, PF min
- Harmonic analysis (FFT) up to the $15^{\text {th }}$ harmonic (current and voltage)
- Four quadrant power measurement
- Energy measurements: total and partial kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Universal power supply: 90 to 260 VAC/DC, 18 to 60 VAC/DC
- Front dimensions: 96x96mm
- Voltage asymmetry, phase sequence, phase loss control

How to order WM14-96 AV5 3HR2S1 AX
Model
Range code
System
Power supply
Output 1
Output 2
Option

Type Selection

Input specifications

Rated inputs Current Voltage	System type: 3-phase 3 (By shunts) 4	Phase-neutral voltage Active and Apparent power,	$\pm(0.5 \%$ FS + 1 DGT)
			$0.25 \text { to } 6 \mathrm{~A}: \pm(1 \% \text { FS +1DGT); }$ $0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm(1 \% \mathrm{FS}$
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{VT}=1 \mathrm{AV} 5$: 1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL	Reactive power	```+5DGT) 0.25 to 6A: \pm(2% FS +1DGT); 0.03A to 0.25A: }\pm(2% F +5DGT)```
Current	0.25 to $6 \mathrm{~A}: \pm$ (0.5\% FS +1DGT)	Active energy	Class 1 (start up current: 30mA)
	$0.03 \mathrm{Ato} 0.25 \mathrm{~A}: \pm(0.5 \% \mathrm{FS}+7 \mathrm{DGT})$	Reactive energy	Class 2 (start up current: 30mA)
Neutral current	0.25 to $6 \mathrm{~A}: \pm$ (1.5% FS +1DGT)	Frequency	$\pm 0.1 \mathrm{~Hz}$ (48 to 62 Hz)
	$0.09 \mathrm{Ato} 0.25 \mathrm{~A} \cdot \pm(1.5 \% \mathrm{FS}+7 \mathrm{DGT})$	Harmonic distortion	$\pm 3 \%$ F.S. (up to $15^{\text {th }}$ harmonic)
Phase-phase voltage	$\pm(1.5 \%$ FS +1 DGT)		(F.S.: 100\%)

Input specifications (cont.)

Additional errors Humidity	$\leq 0.3 \%$ FS, 60% to 90% RH
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Sampling rate	1600 samples $/ \mathrm{s} @ 50 \mathrm{~Hz}$
	1900 samples $/ \mathrm{s} @ 60 \mathrm{~Hz}$
Display refresh time	200 ms (FFT off)
	500 ms (FFT on)
Display	
Type	LED, 14mm
Read-out for instant. var.	3×3 DGT
Read-out for energies	$3+3+3$ DGT (Max indication:
	$99999999.9)$
Read-out for hour counter	$1+3+3 \mathrm{DGT}$ (Max. indication:
	$99999.99)$

\(\left.$$
\begin{array}{ll}\text { Measurements } & \begin{array}{l}\text { Current, voltage, power, } \\
\text { power factor, frequency }\end{array}
$$

Type \& TRMS measurement of

distorted waves.\end{array}\right\}\)	Direct
Coupling type	$\quad 3$, max 10 A peak.

Output Specifications

Digital outputs
Pulse type

Pulse type
Number of outputs Type

Alarm type
Number of outputs
Alarm modes

Set-point adjustment
Hysteresis
On-time delay
Output status

Min. response time

Remote control

Note	"rEm" The 2 digital outputs can also work as pulse output and alarm output.
Static outputs Purpose	For pulse outputs or for alarm outputs

Signal
Up to 2
Programmable from 0.01 to 500 pulses per kWh/kvarh
Pulse duration
$\geq 100 \mathrm{~ms}<120 \mathrm{msec}(\mathrm{ON})$,
$\geq 100 \mathrm{~ms}$ (OFF)
according to EN62053-31
Up to 2, independent Up alarm, down alarm, in window alarm, out window alarm. Start-up deactivation function available for all kinds of alarm. All of them connectable on all variables (see the table "List of the variables that can be connected to")
From 0 to 100% of the display scale
From 0 to full scale 0 to 255s
Selectable; normally de-energized and normally energized
$\leq 400 \mathrm{~ms}$, filters excluded, With FFT off; ≤ 1 s, with FFT on. (With Set-point on-time delay: "0 s")
The digital outputs status can be managed by means of serial communication RS485 if programmed as "rEm"

The 2 digital outputs cutput and output and alarm output.

For pulse outputs or for alarm outputs

Purpose
Type

Insulation

Protocol

Baud-rate Insulation

Von 1.2 VDC/ max. 100 mA Voff 30 VDC max.
By means of optocuplers, $4000 \mathrm{~V}_{\text {RMs }}$ output to measuring inputs, $4000 \mathrm{~V}_{\text {RMS }}$ output to power supply input.
Relay outputs

Mecanical life
Electrical life

RS422/RS485

Connections

Addresses
Data (bidirectional)
Dynamic (reading only)
Static (reading and writing) Data format

For alarm outputs or for pulse outputs
Relay, SPST type
AC 1-5A @ 250VAC
DC 12-5A @ 24VDC
AC 15-1.5A @ 250VAC
DC 13-1.5A @ 24VDC
$\geq 30 \times 10^{6}$ operations $\geq 10^{5}$ operations (@ 5A, 250V, PF1) $4000 \mathrm{~V}_{\text {RMS }}$ output to measuring input, $4000 \mathrm{~V}_{\text {RMS }}$ output to supply input.
(on request)
Multidrop
bidirectional (static and dynamic variables)
2 or 4 wires, max. distance 1000 m , termination directly on the instrument
From 1 to 255 , selectable
MODBUS/JBUS (RTU)
System and phase variables: see table "List of variables..."
All the configuration parameters.
1 start bit, 8 data bit, no parity, 1 stop bit 4800, $9600,19200,38400 \mathrm{bits} / \mathrm{s}$
By means of optocouplers, $2.5 \mathrm{~K} \mathrm{~V}_{\text {RMs }}$ output to measuring input $2.5 \mathrm{~K} \mathrm{~V}_{\text {RMS }}$ output to supply input

Software functions

Password 1st level 2nd level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 999, all data are protected	Alarms Working mode	"OR" or "AND" or "OR+AND" functions (see "Alarm parameter and logic" page). Freely programmable on up to 16 total alarms
System selection System 3, unbalanced System 3, balanced	3-phase (3-wire, 4-wire) 3-phase ARON 2-phase (3-wire) 3 -phase (3-wire, 4-wire)		(out1+out2). The alarms can be connected to any variables available in the table "List of the variables that can be connected to"
	3-phase (4-wire) "1CT+1VT" 3-phase (3-wire) "1CT+2VT" 1-phase (2-wire)	Reset	By means of keypad: The following kinds of reset are available:
Transformer ratio CT VT/PT	$\begin{aligned} & 1 \text { to } 60000 \\ & 1.0 \text { to } 6000.0 \end{aligned}$		- all values stored as "dmd max": Admd max, Wdmd max,
Filter Operating range Filtering coefficient Filter action	0 to 100% of the input display scale 1 to 32 Measurements, alarms, serial output (fundamental variables: V, A, W and their derived ones).		- all values stored as "max": $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{WL}_{1}$, $\mathrm{WL}_{2}, \mathrm{WL}_{3}, \mathrm{VL}_{1}, \mathrm{VL}_{2}, \mathrm{VL}_{3}$, and as "Min": $\mathrm{PF}_{1}, \mathrm{PF}_{2}, \mathrm{PF}_{3}$, $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{VL}_{1}, \mathrm{VL}_{2}, \mathrm{VL}_{3}$. - Only the kWh and kvarh
Displaying	Up to 3 variables per page See table "Display pages"		partial counters - Both the kWh and kvarh total and partial counters - the hour counter.

CARLO GAVAZZI

Power Supply Specifications

AC/DC voltage 90 to 260VAC/DC 16 to 60VAC/DC

Power consumption

AC: 6 VA
 DC: 3.5 W

General Specifications

Operating temperature	0 to $+50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ ($\mathrm{RH}<90 \%$ non condensing)	Immunity	EN61000-6-2 industrial environment.
Storage	-30 to $+60^{\circ} \mathrm{C}\left(-22\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	Pulse voltage (1.2/50 $\mu \mathrm{s}$)	EN61000-4-5
temperature	(RH < 90\% non condensing)	Safety standards	IEC60664, IEC61010-1
Overvoltage category	Cat. III (IEC 60664, EN60664)		EN60664, EN61010-1
Insulation (for 1 minute)	4 kVAC RMs between measuring inputs and power supply. 4kVAC/DC @ I $\leq 3 \mathrm{~mA}$ between measuring inputs and RS485. 4 kVAC Rms between power supply and RS485.	Approvals	CE, cULus
		Connections 5(6) A Max cable cross sect. area	$\begin{aligned} & \text { Screw-type } \\ & 2.5 \mathrm{~mm}^{2} \end{aligned}$
		Housing	
		Dimensions (WxHxD) Material	$96 \times 96 \times 63 \mathrm{~mm}$ ABS self-extinguishing: UL 94 V-0
		Mounting	Panel
Dielectric strength	$4 \mathrm{kVAC} \mathrm{R}_{\text {RS }}$ (for 1 min)	Protection degree	Front: IP65 (standard), NEMA4x, NEMA12 Connections: IP20
EMC			
Emissions	EN61000-6-3 residential environment, commerce and light industry	Weight	Approx. 400 g (pack. incl.)

Insulation between inputs and outputs

	Measuring Inputs V	Measuring Inputs A	Relay outputs	Open collector outputs	Communication Port	Power Supply 90-260VAC/DC	Power Supply 18-60VAC/DC
Measuring Inputs V	-	-	4kV	4 kV	2.5 kV	4kV	4kV
Measuring Inputs A	-	-	4kV	4kV	2.5 kV	4kV	4kV
Relay outputs	4kV	4 kV	-	-	2.5 kV	4 kV	4kV
Open col. outputs	4kV	4kV	-	-	2.5 kV	4 kV	4kV
Communication Port	2.5 kV	2.5 kV	-	-	-	4kV	4kV
90-260VAC/DC	4kV	4kV	4kV	4 kV	4 kV	-	-
18-60VAC/DC	4 kV	4kV	4kV	4 kV	4 kV	-	-

NOTE: In case of fault of first insulation the current from the measuring inputs to the ground is lower than 2 mA .

List of the variables that can be connected to:

- RS485/RS422 communication port
- Alarm outputs ("max / min" variable, "energies" and "hour counter" excluded)
- Pulse outputs (only "energies")

No	Variable	1-phase system	2-phase system	3-ph. 4-wire balanced sys.	3-ph. 4-wire unbal. sys.	3 ph. 3-wire bal. sys.	3 ph. 3-wire unbal. sys.	Notes
1	V L1	x	x	x	x	-	-	\# Δ
2	V L2	0	x	x	x	0	0	\# Δ
3	V L3	0	0	X	X	0	0	\# Δ
4	V L-N sys	0	x	x	x	0	0	Sys $=$ system
5	V L1-2	0	x	x	x	x	x	
6	V L2-3	0	x	x	x	x	x	
7	V L3-1	0	0	x	x	x	x	
8	V L-L sys	0	x	x	x	x	x	Sys = system
9	AL1	x	x	x	x	x	x	\# Δ
10	A L2	0	x	x	X	x	x	\# Δ
11	A L3	0	0	x	x	x	x	\# Δ
12	An	0	X	X	X	x	x	
13	W L1	x	x	x	X	0	0	\bullet
14	W L2	0	X	x	x	0	0	\checkmark
16	W L3	0	0	x	x	0	0	\checkmark
17	W sys	0	x	x	x	x	x	Sys = system
18	var L1	x	X	X	X	0	0	
19	var L2	0	x	x	x	0	0	
20	var L3	0	0	X	X	0	0	
$\underline{21}$	var sys	0	X	X	X	x	X	Sys = system
22	VAL1	X	X	X	X	0	0	
23	VAL2	0	x	x	x	0	0	
24	VAL3	0	0	X	X	0	0	
$\underline{25}$	VA sys	0	X	x	X	x	x	Sys $=$ system
$\underline{26}$	PF L1	X	x	x	X	0	0	H
$\underline{27}$	PF L2	0	x	x	x	0	0	H
$\underline{28}$	PF L3	0	0	X	X	0	0	H
$\underline{29}$	PF sys	0	X	X	X	X	X	Sys = system
30	Hz	x	x	x	x	x	x	
31	Phase seq.	0	0	x	x	x	x	
32	ASY L-N	0	X	X	X	X	X	
33	ASY L-L	0	x	x	x	x	x	
34	Phase loss	0	x	x	x	x	x	
35	VA sys dmd	X	X	X	X	x	x	Sys = system \bigcirc
36	W sys dmd	x	x	x	X	x	X	Sys = system \bigcirc
37	A L1 dmd	x	x	x	x	x	x	
38	A L2 dmd	0	x	x	X	x	X	
39	A L3 dmd	0	0	X	X	X	X	
40	AL dmd	x	x	x	x	x	x	$\square \bullet$
41	A L1 THD	x	X	X	X	X	X	
42	A L2 THD	0	x	x	X	x	X	
43	A L3 THD	0	0	x	x	x	x	
44	V L1 THD	x	x	x	x	x	x	
45	V L2 THD	0	x	x	x	x	x	
46	V L3 THD	0	0	x	x	x	x	
47	kWh	x	x	x	X	x	x	Total and partial
48	kvarh	X	X	X	X	x	X	Total and partial
49	hours	x	x	x	x	x	x	

(x) = available
(o) = not available
(\star) These variables are available also as MAX detection and data storage (on EEPROM at power down).
(H) These variables are available also as MIN detection and data storage (on EEPROM at power down).
(ㅁ) Highest value among the 3 -phase.
(O) Alarm available only on the consumed power (+).
(\#) These variables are available also for the MAX values, which have not been stored in the EEPROM at power down
(Δ) These variables are available also for the MIN values, which have not been stored in the EEPROM at power down.

CARLO GAVAZZI

Alarm parameters and logic

Note: any alarm working mode can be linked to the "Start-up deactivation" function which disables only the first alarm after power on of the instrument.

AND/OR logical alarm examples:

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	\%	"ASY"	"L N"	Phase to neutral asymmetry
2	V L1	V L2	V L3	
3	V LN sys		PF sys	Sys $=$ system
4	V LL sys		PF sys	Decimal point blinking on the right of the display
5	V L1 2	V L2 3	V L3 1	Decimal point blinking on the right of the display
6	\%	"ASY"	"L L"	Phase to phase asymmetry
7	"PH"	"SEq"	123/132	Phase sequence
8	AL1	A L2	A L3	
9	A dmd L1	A dmd L2	A dmd L3	dmd = demand (integration time selectable from 1 to 30 minutes)
10	An	"n"	Hz	$\mathrm{An}=$ neutral current
11	W L1	W L2	W L3	
12	W dmd L1	W dmd L2	W dmd L3	dmd = demand (integration time selectable from 1 to 30 minutes)
13	PF L1	PF L2	PF L3	
14	var L1	var L2	var L3	
15	VA L1	VA L2	VA L3	
16	VA sys	W sys	var sys	
17	VA dmd sys	W dmd sys	Hz	dmd = demand (integration time selectable from 1 to 30 minutes)
18	V max L1	V max L2	V max L3	Max value of phase to neutral voltage
19	V min L1	V min L2	V min L3	Min value of phase to neutral voltage
20	A max L1	A max L2	A max L3	Max value of current
21	A min L1	A min L2	A min L3	Min value of current
22	W max L1	W max L2	W max L3	Max value of W
23	PF min L1	PF min L2	PF min L3	Min value of PF
24	VA dmd sys max	W dmd sys max	"H"	Max system dmd
25	A dmd max		"H"	Highest value among the 3-phase
26	V L1 THD	V L2 THD	V L3 THD	
27	AL1 THD	A L2 THD	A L3 THD	
28	h (MSD)	h	h (LSD)	Hour counter
29	kvarh (MSD)	kvarh	kvarh (LSD)	Partial counter
30	kWh (MSD)	kWh	kWh (LSD)	Partial counter
31	kvarh (MSD)	kvarh	kvarh (LSD)	Total counter
32	kWh (MSD)	kWh	kWh (LSD)	Total counter

MSD: most significant digit
LSD: least significant digit

1) Example of kWh visualization:

This example is showing 15933453.7 kWh
2) Example of kvarh visualization:

This example is showing 3553944.9 kvarh

Waveform of the signals that can be measured

Figure A
Sine wave, undistorted
Fundamental content Harmonic content
$\mathrm{A}_{\mathrm{rms}}=$

Figure B
Sine wave, indented
Fundamental content
Harmonic content
Frequency spectrum: 3rd to 16th harmonic
Additional error: <1\% FS

Figure C
Sine wave, distorted
Fundamental content
70...90\%

Harmonic content
10...30\%

Frequency spectrum: 3rd to 16th harmonic
Additional error: <0.5\% FS

Accuracy

Wh, accuracy (RDG) depending on the current

varh, accuracy (RDG) depending on the current

Used calculation formulas

Phase variables
Instantaneous effective voltage
$V_{I N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{I N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{1} \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}}$
Instantaneous apparent power
$V A_{1}=V_{I N} \cdot A_{1}$
Instantaneous reactive power
$V A r_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables

Equivalent three-phase voltage
$V_{\Sigma}=\frac{V_{12}+V_{23}+V_{31}}{3}$
Three-phase reactive power
$V A r_{\underline{I}}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$
Three-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
Three-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$
Three-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$

Energy metering

$k W_{h_{i}}=\int_{i_{1}}^{t_{2}} \mathrm{P}_{i}(\mathrm{t}) \mathrm{dt} \cong \Delta t \sum_{\mathrm{n}_{1}}^{\mathrm{m}_{1}} \mathrm{P}_{i}$

Where:
$\mathrm{i}=$ considered phase (L1, L2 or L3)
$\mathbf{P}=$ active power; $\mathbf{Q}=$ reactive power; $\mathbf{t}_{1}, \mathbf{t}_{2}=$ starting and ending time points of consumption recording; $\mathbf{n}=$ time unit; $\Delta \mathbf{t}=$ time interval between two successive power consumptions; $\mathbf{n}_{1}, \mathbf{n}_{2}=$ starting and ending discrete time points of consumption recording

Harmonic Analysis

Analysis principle	FFT	Display of harmonic values	THD \%	
Harmonic measurement Current	Up to 15th harmonic Voltage			Others Up to 15th harmonic
Type of harmonic distortion can				
be measured in both				
3-wire or 4-wire systems.				

Wiring diagrams

When the CT is connected to earth, a leakage current from 0 to 1.8 mA max is generated, whose value depends on the input impedance values of the instrument, on the type of connection and on the line voltage measured by the instrument.

NOTE: the current inputs can be connected to the mains ONLY by means of current transformers. The direct connection is not allowed.

CARLO GAVAZZI

Wiring diagrams

When the CT is connected to earth, a leakage current from 0 to 1.8 mA max is generated, whose value depends on the input impedance values of the instrument, on the type of connection and on the line voltage measured by the instrument.

NOTE: the current inputs can be connected to the mains ONLY by means of current transformers. The direct connection is not allowed.

Output connections

Fig. 13

Fig. 14

Relay out.

Fig. 15

Open collector outputs: The load resistance (Rc) must be designed so that the closed contact current is lower than 100 mA ; the VDC voltage must be lower than or equal to 30 V . VDC: external power supply voltage. Out: positive output contact (open collector transistor). GND: ground output contact (open collector transistor).

RS485 port

Fig. 17

Front Panel Description

1. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

2. Key-pad

To program the configuration parameters and the display of the variables.

S

Key to enter programming and confirm selections;
$\Delta \nabla$
Keys to:

- programme values;
- select functions;
- display measuring pages.

Dimensions and Panel Cut-out

