Energy Management

 Power Analyzer Type WM14-96 "Profibus DP"
CARLO GAVAZZI

- Protection degree (front): IP65
- Front dimensions: 96x96mm

Product Description

3-phase power analyzer with built-in programming keypad. Particularly recommended for displaying the main electrical variables.

Housing for panel mounting, (front) protection degree IP65 and Profibus DP communication port.

- Class 1 (active energy)
- Class 2 (reactive energy)
- Accuracy ± 0.5 F.S. (current/voltage)
- Power analyzer
- Display of instantaneous variables: 3×3 digit
- Display of energies: 8+1 digit
- System variables and phase measurements: W, W ${ }_{\text {dmd }}$, var, VA, VA ${ }_{\text {dmd }}$, PF, V, A, An, A $_{\text {dmd }}$, Hz
- $\mathbf{A}_{\text {max }}, \mathbf{A}_{\text {dmd max }}, \mathbf{W}_{\text {dmd max }}$ indication
- Energy measurements: kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Galvanically insulated measuring inputs
- Profibus DP-V0 serial port
- Alarms (visual only) V_{LN}, An
- Power supply: 90 to 260VAC/DC

Type Selection

Range codes	System		Power supply		Options	
AV5: 380/660VL-/5(6)AAC VL-N: 185 V to 460 V VL-L: 320 V to 800 V	3:	1-2-3-phase, balanced/unbalanced load,with or without	H:	90 to 260VAC/DC	DG:	Profibus DP + galvanic insulated measuring inputs
AV6: $120 / 208 \mathrm{~V}_{\text {L- } / 5(6)}$ AAC VL-N: 45 V to 145 V						
VL-L: 78 V to 250 V						
Phase current: 0.03 A to 6A						
Neutral current: 0.09 to 6A						

AV5: 380/660V ${ }_{\text {L- } / 5(6) A A C ~}$ VL-N: 185 V to 460 V VL-L: 320 V to 800 V VL-N: 45 V to 145 V VL-L: 78 V to 250 V

Neutral current: 0.09 to 6A

1-2-3-phase,
balanced/unbalanced load,with or without neutral

Input specifications

Rated inputs	
Current	3
Voltage	4
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{VT}=1 \mathrm{AV} 5$: 1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL
Current	0.25 to 6A: \pm (0.5\% FS +1DGT)
	0.03A to $0.25 A \cdot \pm(0.5 \%$ FS+7DGT)
Neutral current	0.25 to 6A: \pm (1.5\% FS +1DGT)
	0.09A to 0.25A \pm (0.5\% FS+7DGT)
Phase-phase voltage	$\pm(1.5 \%$ FS +1 DGT)
Phase-neutral voltage	$\pm(0.5 \%$ FS + 1 DGT)
Active and Apparent power	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(1 \% \mathrm{FS}+1 \mathrm{DGT}) \text {; } \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm(1 \% \mathrm{FS} \\ & \text { +5DGT) } \end{aligned}$
Reactive power	0.25 to $6 \mathrm{~A}: \pm(2 \%$ FS +1DGT); 0.03 Ato $0.25 \mathrm{~A}: \pm(2 \%$ FS +5DGT)
Active energy	Class 1 (start up " 1 ": 30mA)
Reactive energy	Class 2 (start up "I": 30mA)

Frequency	$\pm 0.1 \mathrm{~Hz}(48$ to 62 Hz$)$
Additional errors Humidity	$\leq 0.3 \% \mathrm{FS}, 60 \%$ to $90 \% \mathrm{RH}$
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Sampling rate	1400 samples $/ \mathrm{s} @ 50 \mathrm{~Hz}$
	1700 samples $/ \mathrm{s} @ 60 \mathrm{~Hz}$
Display refresh time	700 ms
Display	
Type	LED, 14 mm
Read-out for instant. var.	3×3 DGT
Read-out for energies	$3+3+3$ DGT (Max indication:
	$99999999.9)$
Read-out for hour counter	$1+3+3$ DGT (Max. indication:
	9999 9.99)
Measurements	Current, voltage, power,
	power factor, frequency,
	energy, TRMS measurement
of distorted waves.	
Coupling type	Direct

CARLO GAVAZZI

Input specifications (cont.)

Crest factor	<3, max 10A peak	Frequency	48 to 62 Hz
Input impedance		Overload protection	
380/660V ${ }_{\text {L-L }}$ (AV5)	$1 \mathrm{M} \Omega \pm 1 \%$	Continuous voltage/current	1.2 F.S.
120/208V L-L (AV6)	$1 \mathrm{M} \Omega \pm 1 \%$	For 500ms: voltage/current	2 Un/36A
Current	$\leq 0.02 \Omega$		

Profibus DP Serial Port Specifications

Profibus Type		Data	
	DP-V0 enable only for data reading	Dynamic (reading only)	System, phase variables and energies
Connections	max distance (1200m @ 9.6kbit/s, 100m @ 6Mbit/s) according to IEC61158, 9 -pole connector and 10 screw terminals block.	Baud-rate	Up to 6Mbit/s (mainly depending on the length of the wiring and on the number of instruments belonging to the network)
Addresses	1 to 125, key-pad selectable		
Protocol	Profibus DP-V0		

Software functions

Password 1st level 2nd level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 999, all data are protected		Page 5: An, An Alarm Page 6: W L1, W L2, W L3 Page 7: PF L1, PF L2, PF L3 Page 8: var L1, var L2, var L3 Page 9: VA L1, VA L2, VA L3 Page 10: VA $\Sigma, W \sum, \operatorname{var} \Sigma$ Page 11: VA dmd, W dmd, Hz
System selection	3 -phase with/without n, unbal. 3-phase balanced 3-phase ARON, unbalanced 2-phase Single phase		Page 12: W dmd max (*) Page 13: Wh (*) Page 14: varh (*) Page 15: VL-L Σ, PF Σ, VLN Alarm Page 16. A max (*)
Transformer ratio CT VT	$\begin{aligned} & 1 \text { to } 999 \\ & 1.0 \text { to } 99.9 \\ & \hline \end{aligned}$		Page 17: A dmd max (*) Page 18: hour counter (*) ${ }^{*}$) $=$ These variables are
Filter Operating range	0 to 100\% of the input		stored in EEPROM when the instrument is switched off
Filtering coefficient Filter action	display scale 1 to 16 Measurements, alarms, serial out. (fundamental var: V, A, W and their derived ones).	Alarms	Programmable, for the VLN \sum and An (neutral current). Note: the alarm is only visual, by means of LED on the front of the instrument.
Displaying 3-phase system with neutral	Up to 3 variables per page Page 1: V L1, V L2, V L3 Page 2: V L12, V L23, V L31 Page 3: AL1, AL2,AL3 Page 4: A L1 dmd, A L2 dmd, A L3 dmd	Reset	Independent for: alarm (VLN $\left.\sum, ~ A n\right)$ max: A dmd, W dmd all energies (Wh, varh) and hour counter

Power Supply Specifications

AC: 4.5 VA
DC: 4W

General Specifications

Operating temperature	0 to $+50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (RH < 90\% non condensing)
Storage temperature	$\begin{aligned} & -10 \text { to }+60^{\circ} \mathrm{C}\left(14 \text { to } 140^{\circ} \mathrm{F}\right) \\ & (\mathrm{RH}<90 \% \text { non condensing }) \end{aligned}$
Installation category	Cat. III (IEC 60664, EN60664)
Insulation (for 1 minute)	4000VAC between measuring inputs and power supply. 2000VAC between measuring inputs and the communication port. 2000VAC between power supply and the communication port.
Dielectric strength	4000 VAC (for 1 min)
EMC	
Emissions	EN50084-1 (class A) residential environment, commerce and light industry

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	V L1	V L2	V L3	
2	V L12	V L23	V L31	Decimal point blinking on the right of the display
3	A L1	A L2	A L3	
4	A L1 dmd	A L2 dmd	A L3 dmd	dmd = demand (integration time selectable from 1 to 30 minutes)
5	An	AL.n		AL.n if neutral current alarm is active
6	W L1	W L2	W L3	Decimal point blinking on the right of the display if generated power
7	PF L1	PF L2	PF L3	
8	var L1	var L2	var L3	Decimal point blinking on the right of the display if generated power
9	VA L1	VA L2	VA L3	
10	VA system	W system	var system	
11	VA dmd (system)	W dmd (system)	$\begin{gathered} \mathrm{Hz} \\ \text { (system) } \end{gathered}$	dmd = demand (integration time selectable from 1 to 30 minutes)
12		W dmd MAX		Maximum sys power demand
13	Wh (MSD)	Wh	Wh (LSD)	The total indication is given in max 3 groups of 3 digits.
14	varh (MSD)	varh	varh (LSD)	The total indication is given in max 3 groups of 3 digits.
15	V LL system	AL.U	PF system	AL.U $=$ is activated only if one of VLN is not within the set limits.
16	A MAX			max. current among the three phases
17	A dmd max			max. dmd current among the three phases
18	h			hour counter

MSD: most significant digit
LSD: least significant digit

Display pages (cont.)

1) Example of kWh visualization:

This example is showing 15933453.7 kWh
2) Example of kvarh visualization:

This example is showing 3553944.9 kvarh

Waveform of the signals that can be measured

Figure \mathbf{A}
Sine wave, undistorted
Fundamental content Harmonic content $\mathrm{A}_{\mathrm{fms}}=$

Figure B
Sine wave, indented
Fundamental content Harmonic content
Frequency spectrum: 3rd to Additional error: <1\% FS

Figure \mathbf{C}
Sine wave, distorted
Fundamental content
70...90\% Harmonic content
10... 30%

Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5\% FS

Insulation between inputs and outputs

	Measuring Inputs V	Measuring Inputs A	Profibus Port	Power Supply
Measuring Inputs V	-	-	2 kV	4 kV
Measuring Inputs A	-	-	2 kV	4 kV
Profibus Port	2 kV	2 kV	-	2 kV
Power supply	4 kV	4 kV	2 kV	-

NOTE: In case of fault of first insulation the current from the measuring inputs to the ground is lower than 2 mA .

Accuracy

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

Class 2 accuracy limits (Reactive energy) 5(6A) Start-up current: 30mA

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{\mathrm{IN}}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{\mathrm{iN}}\right)_{i}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)$
Instantaneous power factor
$\cos \varphi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}}$

Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$\operatorname{var}_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables

Equivalent 3-phase voltage
$V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3} \cdot \sqrt{3}$
3-phase reactive power
$\operatorname{var}_{\Sigma}=\left(\right.$ var $_{1}+$ var $\left._{2}+\operatorname{var}_{3}\right)$

3-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
3-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}^{2}+\operatorname{var}_{\Sigma}^{2}}$
3-phase power factor
$\cos \varphi_{\mathrm{\Sigma}}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$

Energy metering

Where:
i = considered phase (L1, L2 or L3)
$\mathrm{P}=$ active power
$Q=$ reactive power
$k \operatorname{var} h i=\int_{t 1}^{t 2} Q i(t) d t \cong \Delta t \sum_{n 1}^{n 2} Q n j$
$\mathrm{t}_{1}, \mathrm{t}_{2}=$ starting and ending time points of consumption recording
$\mathrm{n}=$ time unit
$\Delta t=$ time interval between two successive power consumptions
$\mathrm{n}_{1}, \mathrm{n}_{2}=$ starting and ending discrete time points of consumption recording

Wiring diagrams

> 3-phase load balanced connection

NOTE: the direct connection is not allowed.

Profibus port Wiring diagrams

Terminate the first

 WM14 and the last WM14 by means of the screw terminals T1, T2, T3. Use a two pole shielded cable, about the connection length (from the first to the last instrument) refer to "TAB1".

[^0]| TAB 1 | |
| :---: | :---: |
| Kbit/s | $\mathbf{~ m}$ |
| $9.6 / 19.2 / 45.45 / 93.75$ | ≤ 1200 |
| 187.5 | ≤ 1000 |
| 500 | ≤ 400 |
| 1500 | ≤ 200 |
| $3000 / 6000$ | ≤ 100 |

\rightarrow	Pin no.	Signal	Meaning	Note
	1	Shield	Shield/ protective ground	Not connected
0	2	M24	Ground of 24V output voltage	Not connected
$\left[\begin{array}{lll} 9 \bullet & \bullet \\ 8 \bullet & \bullet 4 \\ 7 \bullet & \bullet \\ 7 & \bullet \\ 6 \bullet & \bullet \\ \hline \end{array}\right]$	3	1B (*)	Receive data / transmission data (+)	RxD/TxD-P
	4	CNTR-P (RTS)	Control signal for repeater (direction control)	
	5	GND (*)	Data transmission potential (ground to 5 V) (ground to 5 V)	DGND
	6	VP (*)	Supply voltage of the terminatig resistor-P, (P5V)	
\bigcirc	7	P24	Output voltage 24V (+)	Not connected
	8	1A (*)	Receive data / trans- mission data $(-)$ mission data (-)	RxD/TxD-N
	9	CNTR-N	Control signal for repeater (direction control)	Not connected

(*) The mandatory signals have to be made available by the user.

Front Panel Description

1. Key-pad

To program the configuration parameters and the display of the variables.

S

Key to enter programming and confirm selections;

Keys to:

- programme values;
- select functions;
- display measuring pages.

2. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables

Dimensions and Panel Cut-out

[^0]: Terminate the first WM14 positioning the dip-switch in ON on the "Con P" connector and the last WM14 by connecting T1, T2, T3. Use a two pole shielded cable, about the connection length (from the first to the last instrument) refer to "TAB1".

