Energy Management Energy Meter Type EM21 72D

.........

TATATA

- Certified according to MID Directive (option PF only): see "how to order" below
- Not-certified version available (option X): see "how to order" on the next page.

Product Description

Three-phase energy meter with removable front LCD display unit. The same unit can be used either as a DIN-rail mounting or a panel mounting energy meter. This general purpose three-phase energy meter is suitable for both active and reactive energy metering for cost allocation but also for main electrical parameter measurement and retransmission (transducer function). Housing for DIN-rail mount-

Certified according to MID Directive, Module B and Module D of Annex II, for legal metrology relevant to active electrical energy meters (see Annex V, MI003, of

MID). Can be used for fiscal (legal) metrology. Only the total active energy meter is certified according to MID.

• Class B (kWh) according to EN50470-3

- Class 1 (kWh) according to EN62053-21
- Class 2 (kvarh) according to EN62053-23
- Accuracy ±0.5 RDG (current/voltage)
- Energy meter
- Instantaneous variables readout: 3 DGT
- Energies readout: 7 DGT
- System variables: W, var, PF, Hz, Phase-sequence.
- Single phase variables: V_{LL}, V_{LN}, A, PF
- Energy measurements: total kWh and kvarh
- TRMS measurements of distorted sine waves (voltages/currents)
- Self power supply
- Dimensions: 4-DIN modules and 72x72mm
- Protection degree (front): IP50
- Application adaptable display and programming procedure (Easyprog function)
- Easy connections management
- Detachable display
- Multi-use housing: for both DIN-rail and panel mounting applications

ing with IP50 (front) protection degree. Current measurements carried out by means of external current transformers and voltage measurements carried out either by means of direct connection or by means of potential transformers. EM21-72D is provided, as standard, with a pulsating output for active energy retransmission. In addition a 2-wire RS485 communication port is available as an option.

CARLO GAVAZZI

How to order EM21 72D AV5 3 X O X PF A D

Model ——— Range code —— System ———	L
Power supply	
Output 2	
Option — — — — — — — — — — — — — — — — — — —	
Mounting type -	

Type Selection

Rang

AV5

AV6

Rang	ge codes	Syst	em	Pow	er supply	(
AV5: AV6:	(CT connection)	3:	3-phase, 4-wire	X:	Self power supply from 18V to 260VAC VLN, 50 Hz (connection VL1-N)	I
Outp	ut 1	Outp	ut 2	Mou	nting type	
0:	Single static output (opto- mosfet)	X: S:	None RS485 port	D: P:	DIN-rail mounting Panel mounting	F

Measurement

Options

PF:

A: The power is always integrated -both in case of positive (imported) and negative (exported) power

Certified according to MID Directive. Can be used for fiscal (legal)

metrology.

B: only the positive (imported) power is integrated - no integration in case of negative (exported) power

NOTE: please check the availability of the needed code on the verification path diagram on left before order.

Power su

Powersur, Onton, Onton, Messnewert, Monutive Abe

STANDARD

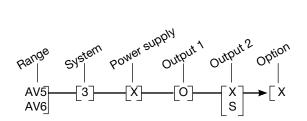
Not certified according to MID directive. Cannot be used for fiscal (legal) metrology.

How to order EM21 72D AV5 3 X O X X

Model ——
Range code
System —
Power supply
Output 1 —
Output 2 —
Option —

Type Selection

Rang	e codes	Syst	tem	Pow	ver supply	Opti	ons
AV5: AV6:	400V _{LL} AC, 5(6)A or 1(6)A (*) (CT connection) 120/230V _{LL} AC 5(6)A or 1(6)A (*) (VT/PT and CT connections)	3:	balanced and unbalanced load: 3-phase, 4-wire; 3-phase, 3-wire; 2-phase, 3-wire; 1-phase, 2-wire	 X:	Self power supply from 18V to 260VAC VLN, 45 to 65 Hz (connection VL1-N)	X:	none


Output 1

Output 2

O: Single static output (opto-mosfet)

X:	None
S:	RS485 port

(*) the range 1(6)A is available but not in compliance with the EN50470-3 standard.

NOTE: please check the availability of the needed code on the verification path diagram on left before order.

Input specifications

Rated inputs Current type	System type: 3 Not isolated (shunt inputs).	Energies	Imported Total: 5+2, 6+1 or 7DGT
	Note: the external current	Overload status	EEE indication when the
	transformers can be con- nected to earth individually.		value being measured is
Current range (by CT)	AV5 and AV6: 5(6)A. The		exceeding the "Continuous inputs overload" (maximum
	"1(6)A" range is available		measurement capacity)
	but not in compliance with the EN50470-3 standard.	Max. and Min. indication	Max. instantaneous vari- ables: 999; energies:
Voltage (direct or by VT/PT)	AV5: 400VLL;		9 999 999. Min. instantane-
	AV6: 120/230VLL		ous variables: 0; energies
Accuracy (Display + RS485) (@25°C ±5°C, R.H. ≤60%, 50Hz)	In: see below, Un: see below		0.00.
AV5 model	In: 5A, Imax: 6A; Un: 160 to	LEDs	Red LED (Energy con- sumption)
	260VLN (277 to 450VLL).		0.001 kWh by pulse if CT
AV6 model	In: 5A, Imax: 6A; Un: 40 to 144VLN (70 to 250VLL).		ratio x VT ratio is <7; 0.01 kWh by pulse if CT
Current AV5, AV6 models	From 0.002In to 0.2In:		ratio x VT ratio is ≥ 7.0
	±(0.5% RDG +3DGT).		< 70.0;
	From 0.2In to Imax: $\pm (0.5\% \text{ RDG} + 1\text{DGT}).$		0.1 kWh by pulse if CT ratio x VT ratio is \geq 70.0
Phase-neutral voltage	In the range Un: $\pm (0,5\%)$		< 700.0;
Phase-phase voltage	RDG +1DGT). In the range Un: $\pm(1\% RDG)$		1 kWh by pulse if CT ratio
Thase phase voltage	+1DGT).	Max frequency	x VT ratio is \geq 700.0; 16Hz, according to
Frequency	Range: 50Hz;		EN50470-3
Active power	resolution: ±1Hz ±(1%RDG +2DGT).		Green LED (on the terminal blocks side) for power on
Power Factor	±[0.001+1%(1.000 - "PF		(steady) and communica-
Popotivo powor			tion status: RX-TX (in case
Reactive power Active energy	±(2%RDG +2DGT). class B according to		of RS485 option only) blinking.
0,	EN50470-1-3;	Measurements	See "List of the variables
	class 1 according to EN62053-21.		that can be connected to:"
Reactive energy	class 2 according to	Method	TRMS measurements of distorted wave forms.
	EN62053-23.	Coupling type	By means of external CT's.
	In: 5A, Imax: 6A; 0.1 In: 0.5A.	Crest factor	In 5A: ≤3 (15A max. peak).
	Start up current: 10mA.	Current Overloads	a
Energy additional errors		Continuous For 500ms	6A, @ 50Hz. 120A, @ 50Hz.
Influence quantities	According to EN62053-21, EN50470-1-3, EN62053-23	Voltage Overloads	
Temperature drift	≤200ppm/°C.	Continuous	1.2 Un
Sampling rate	1600 samples/s @ 50Hz,	For 500ms Current input impedance	2 Un
D : 1 (1):	1900 samples/s @ 60Hz	5(6)A	< 0.3VA
Display refresh time Display	1 second 2 lines	Voltage input impedance	
Display	1 st line: 7-DGT,	Self-power supply	Power consumption: <2VA.
	2 nd line: 3-DGT or	Frequency	$50 \pm 5Hz/60 \pm 5Hz.$
	1 st line: 3-DGT + 3-DGT, 2 nd line: 3-DGT.	Key-pad	Two push buttons for variable selection and
Туре	LCD, h 7mm.		programming of the instru-
Instantaneous variables	2 DCT		ment working parameters.
read-out	3-DGT.		

Output specifications

Pulse output		Connections	2-wire. Max. distance
Number of outputs	1		1000m, termination directly
Туре	Programmable from 0.01		on the instrument.
	to 9.99 kWh per pulses.	Addresses	247, selectable by means
	Output connectable to the		of the front keypad
	energy meters (kWh)	Protocol	MODBUS/JBUS (RTU)
Pulse duration	T _{OFF} ≥120ms, according to	Data (bidirectional)	
	EN62052-31.	Dynamic (reading only)	System and phase vari-
	T _{on} selectable (30 ms		ables: see table "List of
	or 100 ms) according to		variables"
	EN62053-31	Static (reading and writing)	All the configuration
Output	Static: opto-mosfet.		parameters.
Load	V _{on} 2.5 VAC/DC max. 70 mA,	Data format	1 start bit, 8 data bit, no
	V _{OFF} 260 VAC/DC max.		parity,1 stop bit.
Insulation	By means of optocouplers,	Baud-rate	9600 bits/s.
	4000 VRMS output to	Driver input capability	1/5 unit load. Maximum
	measuring inputs.		160 transceiver on the
RS485			same bus.
Туре	Multidrop, bidirectional	Insulation	By means of optocouplers,
	(static and dynamic vari-		4000 VRMS output to
	ables)		measuring input.

Software functions

Password 1st level 2nd level	Numeric code of max. 3 DGT; 2 protection levels of the pro- gramming data: Password "0", no protection; Password from 1 to 999, all data are protected	System 1-Ph Transformer ratio VT (PT) CT	1-phase (2-wire) 1.0 to 99.9 / 100 to 999 / 1.0 to 99.9 / 100 to 999. The maximum VT by CT ratio is 525 for AV5_PF models, 1187 for AV5_X models.
Programming lock System selection	By means of potentiometer (back-side of the display module) it is possible to lock the access to all the configu- ration parameters.	Displaying	Up to 3 variables per page. See « Display pages », 3 different set of variables avail- able (see « Display pages ») according to the metering function being selected.
System 3-Ph.n unbalanced load System 3-Ph.1 balanced load	3-phase (4-wire) 3-phase (3-wire) • 3-phase (3-wire) one cur-	Reset	By means of the front key- pad: total energies (kWh, kvarh).
	rent and 3-phase to phase voltage measurements. Note: the phase to phase voltage is calculated multiplying by 1.73 the virtual phase to neutral voltage. • 3-phase (4-wire) one cur- rent and 3-phase to neutral voltage measurements. Note: the phase to phase voltage is calculated multiplying by 1.73 the virtual phase to neutral voltage. • 3-phase (2-wire) one cur- rent and 1-phase (L1) to neu- tral voltage measurement.	Easy connection function	Wrong phase detection and displaying. For all the display selections (except "D") the current, power and energy measure- ment are independent on the current direction.
System 2-Ph	2-phase (3-wire)		

General specifications

Operating temperature	-25°C to +55°C (-13°F to 131°F) (R.H. from 0 to 90% non-condensing @ 40°C) according to EN62053-21 and EN62053-23.	Surge Radio frequency suppression Standard compliance	On current and voltage measuring inputs circuit: 6kV; According to CISPR 22
Storage temperature	-30°C to +70°C (-22°F to 158°F) (R.H. < 90% non-condensing @ 40°C) according to EN62053-21 and EN62053-23.	Safety Metrology	IEC60664, IEC61010-1 EN60664, EN61010-1 EN62052-11 EN62053-21, EN62053-23, EN50470-3
Installation category	Cat. III (IEC60664, EN60664).	Pulse output Approvals	DIN43864, IEC62053-31 CE, cULus listed, MID (PF option only)
Insulation (for 1 minute)	4000 VRMS between meas- uring inputs and digital out- put.	Connections Cable cross-section area	Screw-type 2.4 x 3.5 mm Min./Max. screws tighten-
Dielectric strength	4000 VRMS for 1 minute.		ing torque: 0.4 Nm / 0.8 Nm
Noise rejection CMRR	100 dB, 48 to 62 Hz.	Housing	
EMC Electrostatic discharges Immunity to irradiated Electromagnetic fields	According to EN62052-11 15kV air discharge; Test with current: 10V/m from 80 to 2000MHz; Test without any cur-	Dimensions (WxHxD) Material Mounting Protection degree	72 x 72 x 65 mm Noryl PA66, self-extinguishing: UL 94 V-0 Panel and DIN-rail
Burst Immunity to conducted disturbances	rent: 30V/m from 80 to 2000MHz; On current and voltage measuring inputs circuit: 4kV 10V/m from 150KHz to 80MHz	Front Screw terminals Weight	IP50 IP20 Approx. 400 g (packing included)

Power supply specifications

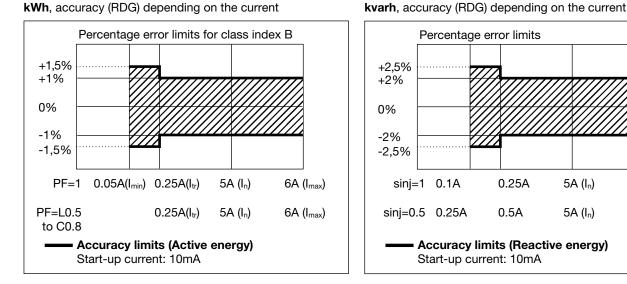
Self power supply

18 to 260VAC (48-62Hz). Across input "VL1" and "N" **Power consumption**

≤2VA/1W

Insulation between inputs and outputs

	Measuring Inputs	Opto-Mosfet output	Communication port	Self power supply
Measuring Inputs	-	4kV	4kV	0kV
Opto-Mosfet output	4kV	-	-	4kV
Communication port	4kV	-	-	4kV
Self power supply	0kV	4kV	4kV	-


NOTE: all the models have, mandatorily, to be connected to external current transformers.

6A (I_{max})

6A (I_{max})

Accuracy (According to EN50470-3 and EN62053-23)

MID compliance (PF option only)

Accuracy	ccuracy $0.9 \text{ Un} \le U \le 1.1 \text{ Un};$ $0.98 \text{ fn} \le f \le 1.02 \text{ fn};$ fn: 50Hz; cosj: 0.5 inductive to 0.8 capacitive.Class B I st: 0.01A; I min: $0.05A; I \text{ tr: } 0.25A; I \text{ n: } 5A$ I max: 6A.	EMC compliance Mechanical compliance	E2 M2
		Protection degree	in order to achieve the protection against dust and water required by the norms harmonized to MID, the meter must be used only installed in IP51 (or
Operating temperature	-25°C to +55°C (-13°F to 131°F) (R.H. from 0 to 90% non-condensing @ 40°C)		better) cabinets.

Used calculation formulas

Phase variables

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{i}^{2}}$$

Instantaneous active power

$$W_1 = \frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_i \cdot (A_1)_i$$

Instantaneous power factor

$$\cos\varphi_1 = \frac{W_1}{VA_1}$$

Instantaneous effective current

$$A_1 = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_1)_i^2}$$

Instantaneous apparent power $VA_1 = V_{1N} \cdot A_1$

Instantaneous reactive power var₁ = $\sqrt{(VA_1)^2 - (W_1)^2}$

System variables

Equivalent three-phase voltage $V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} \cdot \sqrt{3}$ Voltage asymmetry

Three-phase active power

 $W_{\Sigma} = W_1 + W_2 + W_3$ Three-phase apparent power $VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + \operatorname{var}_{\Sigma}^2}$ Three-phase power factor $\cos \varphi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$ (TPF)

Energy metering

$$k \operatorname{var} hi = \int_{t_1}^{t_2} Qi(t) dt \cong \Delta t \sum_{n_1}^{n_2} Qnj$$

$$kWhi = \int_{t_1}^{t_2} Pi(t) dt \cong \Delta t \sum_{n_1}^{n_2} Pnj$$

Where:

i= considered phase (L1, L2 or L3) P= active power; Q= reactive power; t₁, t₂ =starting and ending time points of consumption recording; n= time unit; Δ t= time interval between two successive power consumptions; n₁, n₂ = starting and ending discrete time points of consumption recording

List of the variables that can be connected to:

RS485 communication portPulse outputs (only "energies")

No	Variable	1-ph. sys.	2-ph. sys.	3-ph. 4-wire balanced sys- tem	3-ph. 3-wir balanced sys- tem	3-ph. 4-wire unbalanced system	3-ph. 3-wir unbalanced system	Notes	
1	kWh	х	х	X	X	х	х	Total	
2	kvarh	х	х	X	X	Х	х	Total	
3	V L-N sys (1)	0	х	x	X	х	х	sys=system (∑)	
4	V L1	х	х	x	X	х	х		
5	V L2	0	х	x	х	х	х		
6	V L3	0	0	x	х	х	х		
7	V L-L sys (1)	0	х	x	x	х	х	sys=system (∑)	
8	V L1-2	0	х	x	x	х	х		
9	V L2-3	0	0	x	x	х	х		
10	V L3-1	0	0	x	x	х	х		
11	A L1	х	х	x	x	х	х		
12	A L2	0	х	x	X	х	х		
13	A L3	0	0	x	x	х	х		
14	VA sys (1)	х	х	X	x	х	х	sys=system (∑)	
15	VA L1 (1)	х	х	X	X	Х	х		
16	VA L2 (1)	0	х	x	x	х	х		
17	VA L3 (1)	0	0	х	x	Х	х		
18	var sys	х	х	Х	X	х	х	sys=system (∑)	
19	var L1 (1)	х	х	Х	X	х	х		
20	var L2 (1)	0	х	Х	X	х	х		
21	var L3 (1)	0	0	х	x	Х	х		
22	W sys	х	х	X	x	Х	х	sys=system (∑)	
23	W L1 (1)	х	х	х	x	х	х		
24	W L2 (1)	0	х	Х	x	Х	х		
25	W L3 (1)	0	0	х	x	х	х		
26	PF sys	х	х	х	x	х	х	sys=system (∑)	
27	PF L1	х	х	х	x	Х	х		
28	PF L2	0	х	х	х	х	х		
29	PF L3	0	0	х	x	х	х		
30	Hz	х	х	х	х	х	х		
31	Phase sequence	0	0	x	x	х	х		

(x) = available

(o) = not available (zero indication on the display)
 (1) = Variable available only through the serial communication port RS485

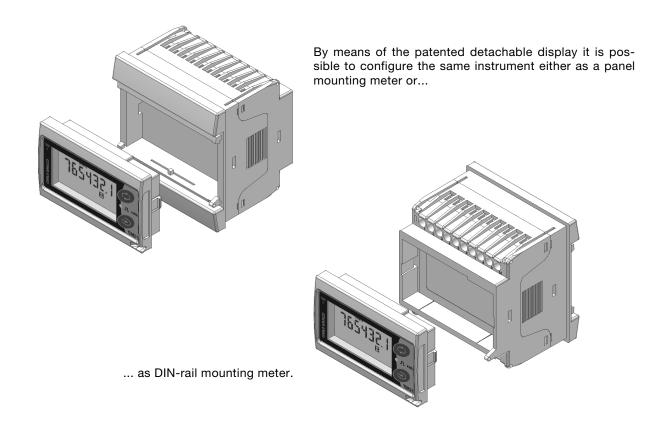
Display pages

No	1st variable	2nd variable	3rd variable	Note		Applications			
NO	(1 st half-line)	st half-line) (2 nd half-line) (2nd line)		Α	В	С	D		
	Phase sequence			The phase sequence triangle appears in any page only if there is a phase reverse	х	х	х	x	
1	Total kWh		W sys		х	х	х	х	
2	Total kvarh		kvar sys			х	х	х	
3		PF sys	Hz	Indication of C, -C, L, -L depending on the quadrant		x	х	x	
4	PF L1	PF L2	PF L3	Indication of C, -C, L, -L depending on the quadrant			х	x	
5	A L1	A L2	A L3				х	х	
6	V L1-2	V L2-3	V L3-1				х	х	
7	V L1	V L2	V L3				х	х	

Additional available information on the display

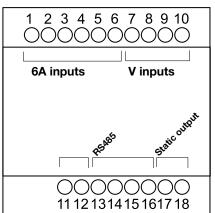
Туре	1st line	2nd line	note		
Meter information 1	Y. 2007	r.A0	Year of production and firmware release		
Meter information 2	value	LEd (kWh)	KWh per pulse of the LED		
Meter information 3	SYS [3P.n]	value	System type and connection type		
Meter information 4	Ct rAt.	value	Current transformer ratio		
Meter information 5	Ut rAt.	value	Voltage transformer ratio		
Meter information 6	PuLSE (kWh)	value	Pulse output: kWh per pulse		
Meter information 7	Add	value	Serial communication address		
Meter information 8	value	Sn	Secondary address (M-bus protocol)		

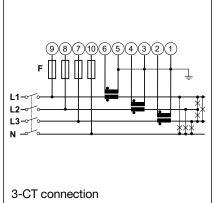
List of selectable applications

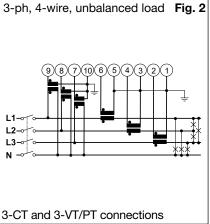

	Description	Notes			
Α	Active energy meter **	Active energy measurement with some minor parameters			
В	Active and reactive energy meter **	Active and reactive energy measurement with some minor parameters			
С	Full set of variables **	Full set of available variables can be displayed (default selection, except PFE option)			
D	Full set of variables **	Full set of available variables can be displayed + (default in PFB option)			

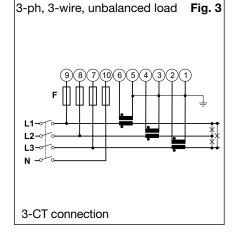
Notes:

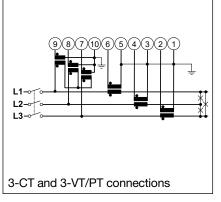
* Only in "D" application the actual direction of the current is considered.


* Not available with option PF A. ** Not available with option PF B.

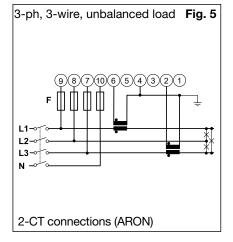

One instrument with double mounting capability



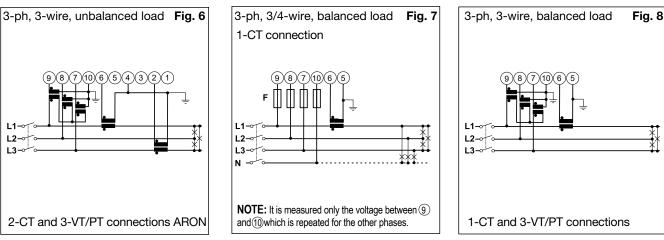

Wiring diagrams



(6A) System type selection: 3P.n



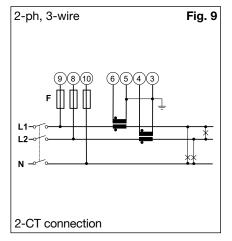
L2

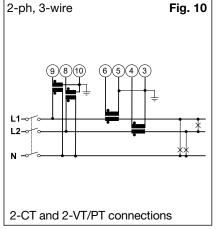

L3

3-ph, 3-wire, unbalanced load Fig. 4

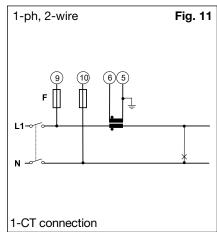
(6A) Self power supply, system type selection: 3P.1

NOTE: For a correct power supply of the instrument, the neutral must always be connected.

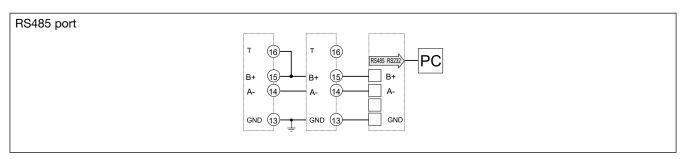

3-ph, 4-wire, unbalanced load Fig. 1


(6A) Self power supply, system type selection: 3P.n

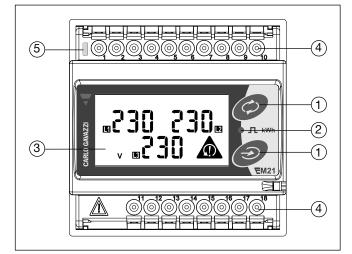
Wiring diagrams


(6A) System type selection: 2P

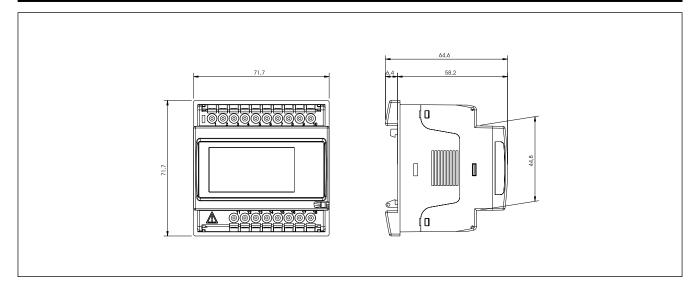
Static output wiring diagram

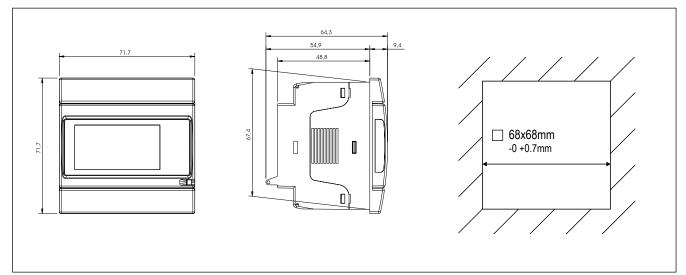

(6A) System type selection: 1P

(6A) System type selection: 1P


RS485 port wiring diagram

RS485 NOTE: additional devices provided with RS485 are connected as per the picture above. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (B+) and (T).


Front panel description


Dimensions (DIN configuration)

1. Keypad To program the configuration parameters and scroll the variables on the display.

- 2. Pulse output LED Red LED blinking proportional to the energy being measured.
- **3. Display** LCD-type with alphanumeric indications to display all the measured variables.
- 4. Connections
- Screw terminal blocks for instrument wiring.
- 5. Green LED Lit when power supply is available

Dimensions and panel cut out (72x72 panel mounting configuration)

